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STABILITY AND CHAOTIC MOTIONS OF A
RESTRAINED PIPE CONVEYING FLUID
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The stability and dynamics of a cantilevered pipe conveying fluid with motion-limiting
constraints and an elastic support have been investigated. Attention was concentrated on
the behaviour of the system in the region of dynamic instability, and several motions were
found by using the method of numerical simulations. The effect of the spring constant and
some other parameters on the dynamics of the system was also investigated. It is shown
that chaotic motions can occur in this system in a certain region of parameter space.
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1. INTRODUCTION

The dynamics of cantilevered pipes conveying fluid has been studied quite extensively by
many investigators [1]. Most of the early theoretical work on this problem has been carried
out within the framework of linear theory. With the recent developments of the theory
on non-linear dynamical systems and chaos, much attention has been paid to the study
of possible existence of chaotic motions in some modified systems with strong
non-linearities. Tang and Dowell [2] have disclosed the chaotic behaviour of a cantilevered
pipe conveying fluid when two permanent magnets are placed to the right and left of the
free end of the pipe. Paı̈doussis and Moon [3] studied, both experimentally and
theoretically, the dynamics of a cantilevered pipe which is constrained by non-linear
motion restraints. In a range of values of flow velocity beyond the Hopf bifurcation, they
found that chaotic motions arise in this autonomous system through a series of period
doubling bifurcations. A series of studies on this topic was done by Paı̈doussis et al. [3–6]
to complete their work from various aspects. More recently, Li and Paı̈doussis [7] studied
certain non-linear equations of motion of a ‘‘standing’’ cantilevered pipe conveying fluid
by using the perturbation technique and Galerkin’s method. They analyzed a doubly
degenerate case in which the system possesses a zero eigenvalue and a pair of purely
imaginary eigenvalues. The theory of the centre manifold and normal forms and the
Melnikov method were applied in the analysis to obtain the local codimension two
unfolding as well as to provide possible parameter regions in which chaotic motions may
arise.

In this paper the planar dynamics of a cantilevered pipe conveying fluid, as shown in
Figure 1, are analyzed. The pipe is restrained by the motion-limiting constraints, and a
linear spring support is attached to it at the restrained point. It should be noted that the
system without the linear spring support is the same as studied by Paı̈doussis and Moon
[3]. The purpose of the present paper is to investigate the effect of the spring constant and
some other parameters on the dynamics of the system. Attention is concentrated on the
possible chaotic behaviour of the system which has been shown to occur in the case of
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no spring support [3]. It should also be noted that the present model will become the one
studied by Sugiyama et al. [9] when the motion-limiting constraints are removed.

2. DIFFERENTIAL EQUATION OF MOTION

The system considered is shown in Figure 1. The cantilevered pipe conveying fluid is
hanging vertically and subject to planar motions: y(x, t). The pipe axis in its undeformed
state coincides with the x-axis, which is in the direction of gravity. In the (x, y) plane, there
are motion constraints, positioned with a certain lateral clearance to the pipe and the linear
spring support. For details about the mechanical model of the pipe and the motion
constraints, the reader should refer to references [3, 8]. Some main assumptions for the
system are:

(1) The material of the pipe is viscoelastic and of the Kelvin–Voigt type [8] with
viscoelastic coefficient a.

(2) The fluid flow is incompressible and steady with mean velocity U.
(3) The effect of external damping is small and is neglected here.
(4) The effect of the motion constraints and the spring support can be written as the

restraining force [3]:

f=(K1 y+K2 y3) d(x− xb ) (1)

where d is the Dirac delta function; K1 is the stiffness of the spring of the elastic support;
K2 is the stiffness of the cubic spring which represents the effect of the motion constraints.
Then, the equation of motion of the pipe may be written as
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where EI is the flexural rigidity of the pipe, L its length and m its mass per unit length;
M is the mass of the fluid per unit length, y(x, t) the lateral deflection of the pipe and g
the acceleration due to gravity.

Introducing the following non-dimensional variables and parameters

h= y/L, j= x/L, t=(EI/[M+m])1/2t/L2, u=(M/EI)1/2UL,

b=M/(M+m), g=(M+m)gL3/EI, k1 =K1 L3/EI, k2 =K2 L5/EI,

jb = xb /L, a=(EI/[M+m])1/2a/L2, (3)

equation (2) may be written as a dimensionless form

Figure 1. Schematic of the system treated in this paper.
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To discretize equation (4) in accordance with Galerkin’s method, let

h(j, t)= s
N

r=1

8r (j)qr (t), (5)

where

8r (j)= cosh lr j−cos lr j− sr (sinh lr j−sin lr j),

sr =[sinh lr −sin lr ]/[cosh lr +cos lr ], (r=1, 2, . . . , N) (6)

are the eigenfunctions of the cantilever beam. The dynamics in the lower four-dimensional
(two-degree-of-freedom, i.e., N=2) versions of the analytical model in the case of no
spring support was found to be in good qualitative agreement, and in good quantitative
agreement in some aspects, with experimental observations [3, 5]. For the analytical model
( f(y)=K2 y3) of the restraining force, the convergence of the analytical results was also
demonstrated with an increasing number of degrees of freedom (N), in terms of the
thresholds of various bifurcations [4, 5]. Since the main purpose of this paper is to
investigate part of the qualitative behaviour of the present system, the two-mode expansion
(N=2) in equation (5) is adopted in the analytical model for simplicity. Substituting
equation (5) into equation (4), employing the orthogonality of the modes [8] and
discretization, one can reduce the partial differential equation (4) after laborious
calculation to a four-dimensional first order ordinary differential equation:

Ẋ=AX+F(X), (7)

where

X=(x1, x2, x3, x4)T, x1 = q1, x2 = q2, x3 = q̇1, x4 = q̇2,
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, F(X)= (0, 0, F3, F4)T

b1 b2 b3 b4

a1 =−(l4
1 + u2c11 + ge11 + k1 g11), a2 =−(u2c12 + ge12 + k1 g12),

a3 =−(al4
1 +2zbub11), a4 =−2zbub12, b1 =−(u2c21 + ge21 + k1 g21),

b2 =−(l4
2 + u2c22 + ge22 + k1 g22), b3 =−2zbub21, b4 =−(al4

2 +2zbub22),

F3 =−k2 81 (jb ) [81 (jb )x1 +82 (jb )x2]3, F4 =82 (jb )F3/81 (jb )=F3 /e,

e=81 (jb )/82 (jb ),

bsr =64/[(ls /lr )2 + (−1)r+ s],
2,

r$ s,
r= s,
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Figure 2. k versus u curve.

csr =64(lr sr − ls ss )/[(−1)r+ s −(ls /lr )2],
lr sr (2− lr sr ),

r$ s
r= s

dsr =6(−1)r+ s4(lr sr − ls ss +2)/[1− (ls /lr )4]− bsr [3+ (ls /lr )4]/[1− (ls /lr )4],
crr /2,

r$ s,
r= s,

esr = bsr + dsr − csr , gsr =68s (jb )8r (jb ),
82

r (jb ),
r$ s, (r=1, 2);(s=1, 2),
r= s,

(8)

and lr (r=1, 2) represents the eigenvalues of the cantilever beam.
In the next section, one first determines the fixed points of equation (7) which represent

the configuration of static deformation of the pipe (equilibria), and then analyze and
discuss their stability, mainly in a parameter plane. This information will contribute to the
determination of flow behaviour of the system in phase space.

3. STATIC EQUILIBRIA

The equilibria are given by equations

a1 x1 + a2 x2 +F3 =0, b1 x1 + b2 x2 +F4 =0, x3 =0, x4 =0. (9)

It is clear that there is always a solution (0, 0, 0, 0) to equations (9), i.e., the origin of X
is always a point of equilibrium of the system. Next, one determines the non-zero equilibria
of equations (9). Clearly, the non-zero equilibria lie in the (x1, x2) plane and are given by
the first two equations in equations (9). Since there is the relation, F3 (X)= eF4 (X),
between the non-linear terms in equations (9), one can eliminate F3 and F4 from equations
(9), and obtain

x1 = kx2, (10)

where

k=
a2 − b2 e
b1 e− a1

=
el4

2 + u2(ec22 − c12)+ g(ee22 − e12)
l4

1 + u2(c11 − ec21)+ g(e11 − ee21)
. (11)

Note that the coefficient k only depends on the parameters g, jb and u. In what follows,
g, js , a and b are chosen to be 10, 0·82, 0·005 and 0·2, respectively, in the analysis and
numerical computations. Figure 2 shows the k versus u curve generated by equation (11).
One can see from this curve and equations (9) that at u= u1 1 6·02294, k=0, and so for
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uQ u1 k is negative, and the sign of x1 is opposite to the sign of x2 ; for uq u1 k is positive,
and x1 has the same sign with x2. Substituting equation (10) into equations (9), the
equations may be solved to give

x2 =2[(a1 k+ a2)/b]1/2. (12)

and one obtains the following three equilibria of the system

(1) (0, 0, 0, 0)0 {0}; (2) (kzc , zc , 0, 0)0+{N};

(3) (−kzc ,−zc , 0, 0)0−{N}, (13)

where

c=(a1 k+ a2)/b, b= k2 g2
11 (k+ g12 /g11)3. (14)

The region where the non-zero equilibria exist is given by the inequality

(a1 k+ a2)/b= e(a2 b1 − a1 b2)/b(b1 e− a1)q 0. (15)

Note that

e=81 (jb )/82 (jb )1−4·793Q 0,

b1 e− a1 = u2(c11 − c21 e)+ g(e11 − e21 e)+ l4
1 q 0, (16)

and the sign of b is the same as the sign of (k+ g12 /g11). Let

k0 0−g12/g11 =−1/e1 0·2086336 (17)

Substituting k= k0 into equation (11), one obtains the corresponding value of u:

u1 6·109350 u0 (18)

Then, b is negative when kQ k0 (or uQ u0), and positive when kq k0 (or uq u0). In the
light of the above discussion, one concludes from inequality (15) that the region where the
non-zero equilibria exist is given by

a2 b1 − a1 b2 q 0, for uQ u0, (19)

and

a2 b1 − a1 b2 Q 0, for uq u0. (20)

Figure 3. Existence region of non-zero equilibria. The domain marked by diagonal lines indicates the existence
of non-zero equilibria.
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Because the set of inequalities (19) is empty, the existence domain of the non-zero equilibria
is then given only by inequalities (20) and shown in Figure 3.

Note that the co-ordinates x1 and x2 of the non-zero equilibria tend to infinity when k
tends to k0 from the right (or, when u tends to u0 from the right).

4. STABILITY OF EQUILIBRIA

One now analyzes the stability of the equilibrium configuration by considering small
disturbances about it. If the disturbances decrease with time then the equilibrium is stable.
Mathematically, one can determine the stability according to the linear approximation of
the system in the neighbourhood of the equilibrium; that is, the stability of the equilibrium
depends on the eigenvalues of the Jacobi matrix, evaluated at the corresponding
equilibrium, of the right side in equation (7). For stability all the eigenvalues are negative
(or, complex with negative real parts), and for instability at least one of the eigenvalues
is positive (or, complex with positive real part). The case with zero (or pure imaginary)
eigenvalues constitutes what is referred to as critical behaviour. When the parameters vary
and the system passes through the critical state the type of stability of the equilibrium
points can change and the number of equilibrium points can change as well.
Mathematically, these changes are referred to as bifurcations of solutions.

The Jacobi matrix of the right side in equation (7) has the form

0 0 1 0

0 0 0 1
J=G

G

G

K

k
c1 c2 c3 c4

G
G

G

L

l

, (21)

d1 d2 d3 d4

where

c1 = a1 + 1F3 /1x1 = a1 − k2 g11 E(x1, x2),

c2 = a2 + 1F3 /1x2 = a2 − k2 g12 E(x1, x2),

c3 = a3, c4 = a4, d1 = b1 + 1F4 /1x1 = b1 − k2 g21 E(x1, x2),

d2 = b2 + 1F4 /1x2 = b2 − k2 g22 E(x1, x2), d3 = b3, d4 = b4,

E(x1, x2)=3[81 (jb )x1 +82 (jb )x2]2. (22)

The eigenvalue problem of J yields a quartic characteristic equation of the form

V4 + p1 V3 + p2 V2 + p3 V+ p4 =0, (23)

where

p1 =−(a3 + b4), p2 = a3 b4 − b3 a4 − d2 − c1,

p3 = d2 a3 − c2 b3 + c1 b4 − d1 a4, p4 = c1 d2 − d1 c2. (24)

At the zero equilibrium, ci = ai and di = bi (i=1, 2), and the Jacobi matrix is equal to
A. One needs to examine the two possible critical cases: A has a single zero eigenvalue,
which corresponds to a static bifurcation (divergence), and has a pair of pure imaginary
eigenvalues, which corresponds to a Hopf bifurcation (flutter). For a single zero eigenvalue
the condition is given clearly by

p4 = a1 b2 − b1 a2 =0. (25)
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Figure 4. Sketch of stability regions.

For a purely imaginary pair the condition can be shown to be

p1 p2 p3 − p2
3 = p2

2 p4, p3 q 0 (26)

The stability boundaries on the (u− k1) plane derived from equations (25) and (26) are
shown in Figure 4. Figures 5 and 6 show eigenvalue evolutions as u is varied in two specific
cases: k1 =20 and 90, respectively. In the following analysis the nature of equilibrium is
indicated by noting the signs of the real parts of the corresponding eigenvalues. Figures 4–6
show that the equilibrium is a sink in regions I and II since all the eigenvalues have negative
real parts, i.e., V=(−, −, −, −), a saddle in region III with eigenvalues
V=(+, −, −, −) and a saddle in regions IV and V with V=(+, +, −, −). In fact,
crossing the boundary BS (V=(0, −, −, −)) from region II to III, a subcritical pitchfork
bifurcation occurs; whereas by crossing BD (V=0, 0, −, −)) from region II to IV, {0}
undergoes a supercritical Hopf bifurcation.

The physical implication of these results is as follows. When u is relatively small, i.e.,
the parameters (u, k1) lie in region I or II, the pipe is stable. For a relatively large k1 the
pipe becomes unstable (divergence) when u crosses the boundary BS from the left, and it
loses stability by flutter when u crosses BD from the left with a relatively small k1. These
results are in agreement with the results obtained in reference [9] for a similar system
without the motion-limiting constraints.

Figure 5. Eigenvalue evolutions for {0}: k1 =20.
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Figure 6. Eigenvalue evolutions for {0}: k1 =90.

At the non-zero equilibria 2{N}, the elements of Jacobi matrix become

c1 = a1 − g11 I0, c2 = a2 − g12 I0, c3 = a3, c4 = a4,

d1 = b1 − g21 I0, d2 = b2 − g22 I0, d3 = b3, d4 = b4, (21)

where

I0 =3(a1, k+ a2)/(kg11 + g12).

Eigenvalue analysis for J shows that the non-zero equilibria are always saddles with
V=(+,−, −, −) in all the cases where they exist and so are always unstable. Figures 7
and 8 show eigenvalue evolutions in two specific cases: k1 =20 and 90, respectively.
According to these results the bifurcation diagrams may be sketched as shown in

Figure 7. Eigenvalue evolutions for 2{N}: k1 =20.
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Figure 8. Eigenvalue evolutions for 2{N}: k1 =90.

Figures 9(a) and 9(b), which correspond to the cases of k1 =20 and 90, respectively. In
these Figures X denotes the state space, and the graphs of the equilibria or closed orbits
in the state space are plotted against the parameter u.

Figure 9. Bifurcation diagrams. (a) k1 =20; (b) k1 =90.
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Figure 10. The ‘‘flutter region’’. The region is divided into seven sub regions according to different behaviour.

5. NUMERICAL ANALYSIS

In this section, it is of interest to investigate, in detail, what behaviour would occur when
the parameter values lie in the ‘‘flutter region’’ (region IV) of Figure 4 which was
determined in the previous section by local stability and bifurcation theory. In general, the
theory only enables to predict the behaviour of the system for the parameter values near
a point on the stability boundary, that is, the theory cannot be applied directly to the
prediction of post-bifurcational behaviour when the parameter values are far from the
boundary value. For this reason, the method of numerical analysis will be used here to
determine the possible motions of the pipe in that region. The ‘‘flutter region’’ in the (u, k1)
plane was divided into a network with certain steps of u and k1, and then numerical
simulations were carried out by solving equation (5) directly with the aid of the fourth
order Runge–Kutta method at every net point. The solution trajectory obtained will be
projected from the four-dimensional space, (x1, x2, x3, x4) to a two-dimensional one,
(x1, x3), and then the behaviour of the system at the net points will be determined through
observation of these phase trajectories. Summarising the resuls obtained, one can divide
approximately the ‘‘flutter region’’ into seven sub regions according to the different
behaviour of the pipe, as shown in Figure 10. In region 1, the pipe undergoes limit cycle
motion (flutter) with a period, the trajectory of which is symmetric. As u increases, a
pitchfork bifurcation of the period solution occurs, and an asymmetric limit cycle motion
arises in region 2. As u increases further, a sequence of period doubling bifurcations arises
in region 3, and as a consequence of these bifurcations, chaotic motions occur in region
4. There is a period-3 window, region 5, in the range of the chaotic motions, like the
phenomenon which occurs in the system with a quadratic map [10]. In region 6, the
motions are chaos-like for a time, but eventually become a divergent motion, and, here,
this transient chaos [11] is termed chaotic divergence. The motion in region 7 is a quick
divergent motion. There are no clear-cut bounds between the regions 6 and 7. The reason
why one distinguishes approximately these two regions here is merely to give rise to
attention to these phenomena. Figures 11(a)–(i) show the phase portraits simulated directly
from equation (7) in some specific cases, which correspond to the behaviour in regions 1–7
of Figure 10, respectively. The corresponding relation between the phase portraits in
Figure 11 and the sub regions in Figure 10 is given in Table 1.
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Figure 11. Numerical simulations of equation (7) projected onto (x1, x3)-plane for k1 =20, k2 =100. (a)
u=7·8, symmetric limit cycle motion; (b) u=8·4. asymmetric limit cycle motion; (c) u=8·75, period-2 motion;
(d) u=8·58, period-4 motion; (e) u=8·75, chaotic motion; (f) u=8·81, period-6 motion; (g) u=8·83, period-3
motion; (h) u=8·99, chaotic divergence; (i) u=9·03, divergent motion.
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T 1

Phase portrait relationships between Figures 11 and 10

Figure 11 (a) (b) (c, d) (e) (f, g) (h) (i)
Subregion
in Figure 10 1 2 3 4 5 6 7

6. CONCLUSIONS AND DISCUSSIONS

In this paper the dynamics of a cantilevered pipe conveying fluid with the
motion-limiting constraints and a spring support has been analyzed. The results obtained
(Figure 4) show that for small flow velocities the trivial equilibrium (i.e., the undeformed
configuration of the pipe) is always stable for any values of k1. But, when u is relatively
large, the pipe loses its stability either by divergence if k1 is relatively large, or by flutter
if k1 is relatively small. Seven sub regions were found in the ‘‘flutter region’’ by using the
method of numerical analysis, in each of which a different behaviour arises including the
chaotic motions of the pipe. This result shows that chaotic motions can also occur in this
motion-constrained pipe system with the elastic support. However, it can be seen from
Figure 10 that the possibility of chaos happening becomes very small as k1 increases. Since
all the non-zero equilibria are always saddle shaped, there is no stable buckling state of
the pipe in the present mathematical model, and so it would not seem that the type of chaos
is one which arises through interaction between limit cycle and two sinks [2].

Note that there are two intersection points, M and N, on the boundary curve of static
and dynamic instability (Figure 4). The zero equilibrium is doubly degenerate at these
points. At M, the matrix A has a zero eigenvalue and a pair of pure imaginary eigenvalues,
which corresponds to the coupled flutter and divergence bifurcation of the motion [12];
at N, another degeneracy occur: A has double zero eigenvalues [13]. Unfolding these
codimension two bifurcation problems near the degeneracy, especially at M, the structure
of phase paths in the state space around the zero and non-zero equilibria may be
determined in detail, and then some information about local behaviour of the solutions
in the flutter region, as well as about the chaotic motions, may be obtained. A detailed
analysis on this topic will be published elsewhere.
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